Aesculap Surgical Instruments
Barré-Instruments

Instruments for Radical prostatectomy

Think Surgical Instruments. Think Aesculap.
Aesculap Surgical Instruments
Barré–Instruments
Content

1. Introduction 4

2. General recommendations 5

3. Surgical technique 6
 3.1 Incision and exposure 6
 3.2 Exposure of the prostate apex 6
 3.3 Preservation of the striated sphincter 7
 3.4 Nerve sparing 10
 3.5 Dissection of the seminal vesicles and section of the bladder neck 12
 3.6 Excision of the seminal vesicles 13
 3.7 Visual inspection of the specimen 13
 3.8 Vesicourethral anastomosis 14

4. References 15

5. Instruments 16
Introduction

Surgery in Motion
“Open Radical Retropubic Prostatectomy”
Dr. Christian Barré, Clinique Jules Verne, Nantes, France

Article in press of European Urology

Radical prostatectomy (RP) is the gold standard treatment for localised prostate cancer. During the last 20 years, since the seminal work by Walsh, there have been many improvements in surgical technique [1]. However, the operation remains one of the most challenging in urology as it has to reconcile two contradictory objectives [2,3]. It has to provide the best possible oncological outcomes, i.e. reduce the risk of positive surgical margins [4,5], whilst also providing the best functional results with regard to urinary continence and erectile function. This is especially important because prostate cancer is being detected in an increasingly young population of men [6]. Good oncological and functional results depend on knowledge of anatomical structures and a precise and rigorous dissection technique.
General recommendations

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Recommendation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Patient positioning</td>
<td>Place patient in dorsal decubitus position. Tilt the operating table at umbilicus level. Above the umbilicus, the patient's body should be in the Trendelenburg position forming an angle of about 30° with the lower part of the body which remains horizontal [7].</td>
</tr>
<tr>
<td>Instruments</td>
<td>Use specialised instrument: prostatic retractor, urethral retractor, dorsal vein complex clamp, nerve-sparing dissector, nerve-sparing scissors, long, angled scalpels (0°, 12°, 24°).</td>
</tr>
<tr>
<td>Bleeding control</td>
<td>Maintain mean arterial BP between 55 and 65 mm Hg during nerve sparing for a bloodless operating field if no cardiovascular or hepatic.</td>
</tr>
</tbody>
</table>
Surgical technique

We describe the steps of an RP protocol developed on the basis of a personal series of >1500 RPs and characterised by: (1) high-quality preservation of the sphincter within its anatomic environment, using a surgical knife and not scissors for high-precision dissection; (2) retrograde dissection of the neurovascular bundles; and (3) a standard procedure for each step of the RP, thus yielding a reproducible protocol independent of individual patient anatomy.

Incision and exposure

- Perform a conventional incision and exposure.
- Perform a bilateral pelvic lymphadenectomy except in patients with low Gleason grade biopsies (<4) or with a prostate-specific antigen (PSA) level <10 ng/ml [8].

Exposure of the prostate apex

- Make an incision in the endopelvic fascia extending from the prostate base to the puboprostatic ligament (Fig. 1a). Transect the puboprostatic ligaments.
- Free the levator ani muscle fibres at the prostate apex. This is a more delicate manoeuvre because of the depth of dissection, the thickness of the fibres, and the presence of venous pedicles originating from the pelvic sidewall (Fig. 1b and c).
- Dissect similarly on both sides.

Fig. 1a: Dissection of prostate apex
Fig. 1b
Fig. 1c
Preservation of the striated sphincter

The striated urethral sphincter is located at the centre of an anatomic unit [9] ("sphincteral complex") encased by the dorsal vein complex, lateral pelvic fascia and Denonvilliers’ fascia (Fig. 2a). The urethra should not be dissociated from this environment as any dissection isolating an urethral tube from adjoining structures will weaken the sphincter. The sphincteral complex is divided in five stages: the superficial then deep part of the dorsal vein complex which covers the sphincter fibres, the ventral then dorsal half of the urethra, and finally Denonvilliers’ fascia.

Stop backbleeding with an x-shaped stitch (absorbable suture 0) over the anterior surface of the prostate.

Slide the blades of a prostatic retractor (BT680R) along each side of the dorsal vein complex.

Clamp the dorsal vein (15°-angled clamp EF167R) over only 1.5 cm to be above the striated sphincter. The remaining dorsal vein complex covering the sphincter fibres should be below the clamp. [Fig. 2b].
Preservation of the striated sphincter

Divide the dorsal vein complex with a sharp surgical knife (BB176R - BB178R) [Fig. 2c]. When two thirds of the section is complete, displace the prostatic retractor a few centimetres back against the anterior surface of the prostate. Exert gentle pressure on the retractor to obtain a horizontal urethral plane and thus good exposure [Fig. 2d, 2e].

Control bleeding by a continuous U-shaped suture behind the clamp [Fig. 2f].

Divide the remaining part of the dorsal vein complex and the lateral pelvic fascia covering the front and sides of the sphincter with an angled scalpel with a rounded blade. Start the incision medially and proceed towards the lateral pelvic fascia until 1 mm from the prostate apex [Fig. 3a].

The incision should be made with great care and stop as soon as the muscle fibres are visible. The roof of the sphincter, with its fibres moving up towards the prostate apex, should now be perfectly exposed. Make a crown-shaped 4/0 running suture on the dorsal vein complex and on each side of the lateral pelvic fascia [Fig. 3b].

Divide the urethra at 1 mm from the apex, down to the catheter, leaving a little muscle over the apex [Fig. 3c, 3d].

Grab the urethral catheter with forceps and bring its distal end into the surgical field. Clamp, then cut the catheter to provide traction.

Remove the prostatic retractor and place a urethral retractor to expose the urethra. Gently push the prostate backwards and tighten the urethral mucosa.
Place 3-0 absorbable sutures as landmarks on the anterior edge of the urethra in anticipation of anastomosis [Fig. 3e]. Gentle traction on the retractor straightens the urethra and exposes the urethral mucosa bulges over the posterior sphincter fibres.

- Divide the urethral mucosa, submucous chorion, and smooth muscle (of variable thickness) with a pointed blade, by tracking the posterior striated fibres of the sphincter (Fig. 4a). Once divided, they slide over the plane of the striated fibres and retract. The fibres are shaped like a “U” with the bottom of the “U” inserted in Denonvilliers fascia.

- Divide the posterior sphincter fibres of the prostate apex with a rounded blade. This must remove the superficial layers of Denonvilliers’ fascia to which the sphincter fibres are attached [Fig. 4b].

In cases of posterior overhang [10], follow the contours of the prostate apex with care.

- Incise the remaining layers of Denonvilliers’ fascia transversally with a pointed bistoury, a few millimeters from the apex, in a narrow midline position in order not to injure the nerves located laterally [Fig. 4c].

- Expose the median rectal prostate plane with Metzenbaum scissors, leaving the Denonvilliers’ fascia on the prostate [11]. If this plane, which is crucial for initiating nerve sparing, is difficult to find, as when Denonvilliers’ fascia is stuck to the pre-rectal fascia, free the apex over a few millimetres and then expose the plane.
Nerve sparing

The neurovascular bundles run along the vascular pedicles coming from the terminal branch of the inferior vesical artery. As noted by Walsh, the nerves follow the vessels which act as a guide to dissection [1]. However, the vessels do not follow the posterolateral prostate contour in a straight line but curve up its lateral surface. The bundles lie between the parietal and the visceral fasciae (lateral extension of Denonvilliers’ fascia) [1] [Fig. 5a]. Dissection should take place in this interfascial space. A thin layer of connective tissue should be left on the prostate to prevent the risk of positive margins, especially in cases of unsuspected focal extracapsular extension (ECE) [12,13]. The visceral fascia should be present on the excised specimen. Although it is easier to preserve the bundles intact by intrafascial dissection, this is not recommended as there is a high risk of positive margins from dissection in contact with gland tissue [Fig. 5a].

There are two nerve-sparing techniques:

- Antegrade dissection [Fig. 5b] starts at the lateral surface of the prostate [14,16], proceeds along the posterolateral contour, and ends at the posterior edge. There is a degree of uncertainty associated with this technique as dissection can start either above the neurovascular bundle (risk of creating intrafascial dissection) or below the bundle (risk of injury to the nerves).
- Retrograde dissection [Fig. 5c] starts at the posterior surface of the prostate. The medial border of the bundle is exposed after the plane between the rectum and the prostate in the midline has been developed. Dissect along the posterolateral surface of the prostate following Denonvilliers’ fascia, then the lateral prostate visceral fascia. This exposes and isolates all the prostatic pedicles coming from the neurovascular bundles. The bundles are thus progressively freed from the prostate up to their extremity on the lateral surface.

- Apply very gentle traction on the urethral catheter and gently roll the prostate over on its side to obtain good exposure of the neurovascular bundles. Use tailor-made nerve-sparing dissector (BJ02R) and scissors (BC715R) for dissection.
The ease of dissection varies according to prostate zone [Fig. 6a]:

- Apex [Fig. 6a1b]
 The risk of nerve injury is low in this zone as the nerves lie in an external plane. The divided pedicles correspond mainly to the lateral attachment points of Denonvilliers fascia and the levator fibres that were not released when freeing the apex.

- Mid-gland [Fig. 6a2c]
 This zone holds the greatest risk of injury to the nerves and of positive margins. Free, then incise the parietal fascia overlying the nerve bundle. Expose the small prostate vessels by exerting very gentle traction on the bundle. Isolate each prostatic vessel, millimetre by millimetre, always leaving a thin layer of connective tissue on the visceral fascia. Should the visceral fascia have been inadvertently incised, dissect immediately 1 or 2 mm further away with the tip of fine pointed scissors. Ensure haemostasis with small titanium ligature clips. Because at the top of the curve formed by the vessels, the nerves are in close contact with the visceral fascia, there is hardly any space for dissection. The nerves may sometimes have to be left over 1 or 2 mm to avoid penetrating the visceral fascia. The quality of dissection in the mid-gland zone is critical for early recovery of erectile function and to prevent the risk of possible positive surgical margins. Binocular loops may prove useful but have not been tested.

- Base [Fig. 6a3d]
 In this zone, the neurovascular bundle pedicles are further away from the prostate and travel towards the pelvic floor. It is easier to leave some connective tissue when dividing each pedicle.

Dissection ends once the posterior surface of the seminal vesicle, covered with the Denonvilliers’ fascia, emerges.

This dissection technique has simplified our indications for nerve-sparing surgery. The decision to resect the neurovascular bundle on the side with a 4 + 3 Gleason score [17] or with a lobe induration on digital rectal examination is always made preoperatively. The decision to resect the neurovascular bundle [18] is made intraoperatively in cases of fibrosis of the prostate fasciae that bar safe dissection and in patients in whom nomograms predict a high risk of capsule breach and in whom insufficient connective tissue can be left for the sake of safety.
Divide the thick prostate base pedicles covering the lateral surface of the seminal vesicle.

Use forceps to grab the seminal vesicle. Develop the plane between the seminal vesicle and the posterior bladder neck with Metzenbaum scissors, whilst remaining in contact with the seminal plane (Fig. 7a), proceeding as far as possible.

Interrupt the procedure on the right-hand side. Perform nerve sparing and seminal vesicle dissection on the left-hand side in the same fashion.

Push back the prostate to expose the posterior surface of the seminal vesicles. Insert a dissector inside the seminal vesicles/bladder neck plane, leaving a surgical loop as a landmark [19] [Fig. 7b].

Push the prostate towards the lower part of the surgical field.

Divide both lateral vesicoprostatic junctions using the tightened surgical loop as a guide (Fig. 7c). Each division starts with the retrovesical fat and comes gradually into contact with the posterior surface of the bladder neck. Join up both divisions on the anterior surface of the bladder neck.

Perform the anterior vesicoprostatic division, leaving a thin layer of bladder tissue on the prostate base to avoid the risk of positive surgical margins. Proceed with the incision until the Foley catheter is exposed. Incise the posterior bladder neck wall, pushing back a median lobe if necessary [Fig. 7d].

In cases of high-grade lesions of the prostate base, it is preferable to resect the bladder neck [20,21].
Excision of the seminal vesicles

Traction of the prostate by the Foley catheter exposes the seminal vesicles and the vas deferens covered with the thin anterior sheet of Denonvilliers’ fascia [Fig. 7e].

- Transect and ligate each vas deferens as far distally as possible from the prostate.
- Remove the seminal vesicles in their entirety.
In most cases, the tip of the seminal vesicles is above the plane of the neurovascular bundles and there is no risk of injury to the nerves. In some cases, it is necessary to tighten the specimen to move the lower extremity of the seminal vesicles away from risk of injury. Dissect in contact with the seminal vesicles, neither too deep nor too wide. This may be a bit awkward but can be done in patients with long vesicles with tips extending beneath the plane of the neurovascular bundles.

- Further haemostasis may be necessary notably on the bladder neck. However, haemostasis near the neurovascular bundles can cause irreversible neurological injury and no coagulation should be performed at this level.

Visual inspection of the specimen

- Check the quality of the excision macroscopically, paying special attention to the apex. There must be a very small ring of sphincter muscle fibres around the urethra and the Denonvilliers’ fascia must be identifiable posteriorly.
- Check that there is a small layer of connective tissue at the posterolateral edge indicating absence of capsular incision.
Vesicourethral anastomosis

- Check bladder neck opening. Use a linear posterior “tennis racket” closure for wide bladder neck openings.
- Insert a CH 16 Foley catheter to locate the urethral lumen before and after each suture passage.
- Tighten both the anterolateral landmark sutures. Place 2 further anterior stitches (3-0 absorbable suture) from the outside in and 5 posterior stitches from the inside out, within a plane anterior to the rectal plane of the neurovascular bundles (22) [Fig. 8a]. Whenever the urethra adjoins the rectal plane, avoid including the posterolateral angle of the urethra by placing 2 stitches on each side, away from the angle.
- Pass vesical sutures and bring the bladder smoothly in contact with the urethra by sliding it along the posterior sutures. Perform urethrovesical stitching. Tie all 5 posterior stitches on the inside in a tensionless knot [Fig. 8b].
- Join the edges together without excessive tension to prevent tearing or ischemia of the sphincter. Insert the urethral catheter and inflate the balloon. Tie all five posterior stitches on the inside in a tensionless knot (Fig. 8b).
- Join the edges together without excessive tension to prevent tearing or ischaemia of the sphincter. Insert the urethral catheter and inflate the balloon. Tie all four anterior sutures. Check that the anastomosis is watertight by filling the bladder with 120 cc saline.
- Position a suction drain on the anterior surface of the bladder, avoiding direct contact with the anastomosis. Perform a conventional closure.
References

Author
Dr Christian Barré
Service d’Urologie
Clinique Jules Verne
2–4 route de Paris
44300 Nantes, France

Tel: (+33) 02 51 17 17 50
Fax: (+33) 02 51 17 17 51
E-mail: christianbarre@hotmail.fr
Radical prostatectomy is one of the standard treatments for localised prostate cancer. However, this surgery is still one of the most difficult in the field of urology because it has to achieve two objectives: reducing positive margins rates and retaining postoperative continence and erectile function. The increasing incidence of prostate cancer at young adults makes these objectives even more significant. Success in cancer control and function preservation requires a detailed knowledge of surgical anatomy and a rigorous surgical technique. To improve the dorsal venous plexus control and urethral division and to allow a precise interfacial dissection in nerve sparing, Dr. Barré has designed and created specific instruments which considerably simplify the surgical technique.
BT680R

- Prostatic retractor
- 360 mm, 14 3/8"
Aesculap Surgical Instruments
Barré–Instruments

EF167R

- Dorsal vein complex clamp
- 210 mm, 8 1/4“
BJ681R
- Urethral retractor
- 390 mm, 15 1/2"

BJ029R
- Nerve sparing dissector
- 280 mm, 11"
BC715R

- Nerve-sparing scissors
- 280 mm, 11"

sharp/sharp
Aesculap Surgical Instruments
Barré–Instruments

BV927R
Suture holding frame
465 mm, 18 1/3"
Additional Instruments

- **GK685R**
 - Bipolar forceps
 - 260 mm, 10 1/4”

- **BJ110R**
 - Nerve sparing dissector
 - 280 mm, 11”